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This study investigates the ability of gene expression programming (GEP) in modeling of the infiltrated
water volume (Z) under furrow irrigation. Field data were collected in the literature study for modeling
Z covering wide range of opportunity time. Five variables were used as input parameters; inflow rate (Qo),
furrow length (L), waterfront advance time at the end of the furrow (TL), infiltration opportunity time (To)
and cross-sectional area of the inflow (Ao). The following statistical parameters that coefficient of deter-
mination (R2), overall index of the model performance (OI), root mean square errors (RMSE) and mean
absolute errors (MAE) are used as comparing criteria for the evaluation of the models’ performances.
The best value of the statistical parameters which range in training, testing and validation processes as
the following (R2 = 95–97%; OI = 94–97%; RMSE = 0.013–0.009m3 m�1; and MAE = 0.011–0.007 m3 m�1)
implies that the GEP model provides an excellent fit for the measured data. A comparison is made
between the estimates provided by the GEP and the two-point method. The comparison results reveal
that the GEP models are superior to two-point method. Furthermore, the remarkable advantage of GEP
was that it resulted in an explicit equation for the estimation of the Z under furrow irrigation.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Infiltration characteristics of soil are one of the most important
parameters in the design, assessment and management of furrow
irrigation (Esfandiari and Maheshwari, 1997). Estimation of soil
infiltration is a major problem in irrigation studies due to proper
selection of the technique used to determine the parameters of
the infiltration models, the use of empirical models and its depen-
dence on soil moisture, soil characteristics and surface roughness.
Thus, the techniques used to determine soil infiltration character-
istics must be appropriate for the purpose of the study (Walker and
Busman, 1990).

It is necessary to utilize the mathematical models for simula-
tion of surface irrigation because of reducing costs and decrease
of time in analysis of indexes including application efficiency and
distribution uniformity (Mahdizadeh Khasraghi et al., 2015). Sev-
eral empirical equations have been developed to calculate infiltra-
tion that is a function of time through a surface irrigation event.
The parameters of these equations are derived by fitting them to
the actual cumulative infiltration data. The equations are then used
to estimate cumulative infiltration and infiltration rates (Ravi and
Williams, 1998). Some commonly used infiltration equations,
which have no apparent physical basis, are the Horton, Kostiakov
and Modified Kostiakov equations.

The mathematical models of surface irrigation are important for
the evaluation and design purposes may be classified into four
main categories. These models are the hydrodynamic (HD), the
zero inertia (ZI), the kinematic wave (KW), and the volume balance
(VB). Valipour and Montazar (2012a, 2012b, 2012c), and Valipour
(2012) compared the HD, ZI, and KW models to optimize infiltra-
tion parameters in furrow irrigation systems. The authors con-
cluded that performance of the HD and ZI was similar and better
than the KW model in all irrigation events. Recently, Valipour
et al. (2015) observed from more than one hundred data review
that the priority of irrigation methods to simulate using HD and
other models is border, basin, and furrow irrigation. It is border,
furrow, and basin for KW and VB models. Finally, this priority is
basin, border, and furrow for ZI model.

Various approaches have been used to estimate the parameters
of empirical infiltration functions from VB and irrigation evalua-
tion data. Therefore, it is important to analyze the problems of irri-
gation management and design (Strelkoff et al., 2009). Alazba
(1999) stated that ‘‘Several models with various solutions have
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been made [for example, Lewis and Milne (1938), Hall (1956), Fok
and Bishop (1965), Chen (1966), Bassett (1972), Kincaid et al.
(1972), Sakkas and Strelkoff (1974), Katopodes and Strelkoff
(1977), Strelkoff and Clemmens (1981), Elliott et al. (1982),
Walker and Skogerboe (1987), Schmitz and Seus (1990),
Valiantzas (1993, 1997), Alazba and Strelkoff (1994)]. Most of
these studies are based on either VB or the ZI. While VB represents
the simple and less accurate models, ZI represents the complex and
more accurate ones. Engineers usually prefer to solve an engineer-
ing problem, particularly for practical and routine tasks, with sim-
ple models. Therefore, the VB is commonly used in surface
irrigation design, evaluation, and management, because the
sophisticated models require extensive programming and high
computer cost due to the long execution time”. Elliott and
Walker (1982) developed a simplified technique which a well-
known two-point method that uses only two points from the
advance phase, usually at mid-distance and at the downstream
end of the field. They assumed that the advance equation can be
described by a power function. Holzapfel et al. (2004) evaluated
four different methods to determine for two furrow sizes narrow
(0.4 m top width) and wide (0.6 m top width). The results showed
that that the two point method performed much better than the
other methods when applied to wide furrow and only slightly
worse when used in narrow furrows. Bautista et al. (2009) reported
that the two-point method is one of the best known techniques to
determine empirical infiltration parameters from surface irrigation
evaluation data and mass balance, mainly because of its limited
data requirements and mathematical simplicity. Ebrahimian et al.
(2010) concluded that the two-point method had good perfor-
mance in prediction of the infiltration for both furrow and border
irrigation. There are several other similar methods based on the
VB (Norum and Gray, 1970; Wu, 1971; Lal and Pandya, 1972;
El-Shafei, 1980; Oyonarte and Mateos, 2003; Holzapfel et al.,
2004), but the main difficulty with them is the use of particular
forms of the infiltration equation. In many field situations, the form
of a particular infiltration equation may not fit the field data, and
therefore these methods may also not be suitable.

Recent technological progress has generated extremely accu-
rate and reliable computer-aided modeling tools. An efficient para-
digm in this area is a pattern recognition system that is effectively
capable of learning from experience (Gandomi et al., 2012). Gene
expression programming (GEP) is one of these intelligent systems,
which are able to map input–output relationships without any
understanding of the physical process involved. GEP was invented
by Ferreira (2001b) and is the natural development of genetic algo-
rithms and genetic programming. GEP has been applied in fields as
diverse as artificial intelligence, artificial life, engineering and
science, financial markets, industrial, chemical and biological pro-
cesses and mechanical models. It has been used to solve problems
such as symbolic regression, multi-agent strategies, time series
prediction, circuit design and evolutionary neural networks
(Samadianfard, 2012). GEP has been used in a number of hydrolog-
ical and hydraulic modeling problems. Guven and Aytek (2009)
used a GEP approach to model the stage–discharge relationship
and compared the results with conventional methods. They found
that the explicit algebraic formulations resulting from the GEP
approach gave the best results. In a similar study, Azamathulla
et al. (2011) developed mathematical models to estimate the
stage–discharge relationship for the Pahang River based on GP
and GEP techniques. Marti et al. (2013) evaluated the performance
of the artificial neural networks (ANN), GEP and Multi Linear
Regression (MLR) for estimating dissolved oxygen at sand filter
outlet using data from 769 experimental filtration cycles. The
results indicated that the GEP model tended to provide the most
accurate estimations, followed by ANN and, lastly, by MLR models.
Yassin et al. (2016) compared GEP, ANN to estimate daily reference
evapotranspiration under arid conditions in Saudi Arabia.

Ravi and Williams (1998) reported that the unsaturated or the
vadose zone is a key element of the hydrological cycle, directly
influencing infiltration, storm runoff, evapotranspiration, inter-
flow, and aquifer recharge. Understanding the nature of water
movement in the vadose zone and its quantification is essential
to solving a variety of problems. Therefore, evaluation of infiltra-
tion parameters for a field is difficult. Numerous models are avail-
able for performing simulations related to the movement of water.
Often these models use over-simplified estimates of infiltration,
which have little basis in reality and do not reflect actual field con-
ditions well. However, the practical application of these infiltration
models has not been adequately addressed. Therefore, the objec-
tives of this study were (1) to use the GEP technique to build a pre-
dictive model for the volume of infiltrated water in a furrow and to
find a generalized solution for infiltration that can be applied to
different soils and furrow conditions and (2) to compare field esti-
mated water infiltrated volume with both of the results of a
recently completed GEP model and the two-point method using
a VB model as described by Walker (1989).

2. Materials and methods

2.1. Database sets

The available database was used for development the GEP
model was obtained from published literature. A total of 159 data
points were collected from six studies (Valiantzas et al., 2001;
Alvarez, 2003;Holzapfel et al., 2004; Playán et al., 2004; Mateos
and Oyonarte, 2005; Sepaskhah and Shaabani, 2007). The studies
were conducted in different locations differing in soil types and
in furrow geometries. Many discharge rates were tested at each
location. Two separate experiments were conducted in the field.
The first experiment studied furrow infiltration using an infiltrom-
eter to estimate infiltration parameters of the empirical Kostiakov
equation. The second experiment consisted of measurements
including land leveling conditions, furrow discharges, furrow
cross-sections; advance time, recession time and hydraulic rough-
ness. Stations were marked at certain distances from the furrow
head. In the advancing phase, as the inflow water entered the fur-
rows and reached each station, the time of reach, water depth, sur-
face water width, flow cross-section and wetted perimeter were
determined. After termination of the inflow, the time of water dis-
appearance at each station was recorded to determine the reces-
sion times. Then, the infiltration opportunity time along the
furrow length at each station was calculated as the time difference
between when water disappeared and when it first started to
advance at the same point along the furrow. Both experiments
were conducted on the same field and performed under similar
conditions. The infiltration parameters established from the first
experiment were used for estimating the furrow infiltrated water
volume (Z) in the second experiment. Table 1 presents details of
the sites and values of the process variables and outputs. Data sets
for development of the GEP model were prepared and included
inflow rate (Qo), furrow length (L), waterfront advance time at
the end of the furrow (TL), infiltration opportunity time (To) and
cross-sectional area of the inflow (Ao) as input variables, and Z as
the output variable. The descriptive statistics of the data used in
this study is given in Table 2.

2.2. Gene expression programming

Gene expression programming (GEP) is a new evolutionary
artificial intelligence technique developed by Ferreira (2001a).



Table 1
Summary of the experimental data used and analysis of variance for the variables.

Soil Variables Location References

Q (l s�1) L (m) TL (min) To (min) Ao (cm2) Z (m3 m�1)

Loam to clay loam 0.85 400 124.3 100–1000 15.8 0.01–0.06 USA Valiantzas et al. (2001)
Silty clay loam 1.5 360 208 100–1000 29.7 0.04–0.21
Sandy loam 2 360 400 100–1000 36.6 0.05–0.33
Vertic Gleysola 3 240 93 2.4–93 114.4 0.02–0.08 Cuba Alvarez (2003)
Haplic Acrisola 3 333 244 3.4–247.1 132.9 0.03–0.16
Rodic Ferrasola 4 333 140 1.1–134.1 171.4 0.01–0.1
Eutric Vertisola 6.6–7.5 380 94–97 1.5–97.1 507.1–558.2 0.01–0.1
Clay loam 1.07 110 72 49.2 42.95 0.05 Chile Holzapfel et al. (2004)
Loam (calcareous) 1.03–3.01 35–48 12.5–16 5–30.3 126.5–301.3 0.01–0.06 Spain Playán et al. (2004)
Silty 0.92–1.28 234 66–167 364–245 60.6–94.3 0.05–0.19 Spain Mateos and Oyonarte (2005)
Clay loam 1.24 100 40.7 68–99.3 222.7 0.03–0.05 Iran Sepaskhah and Shaabani (2007)
P value 2.46 � 10–6 3.65 � 10–6 3.12 � 10–28 1.61 � 10–26 5.36 � 10–2

a According to FAO–UNESCO (1988) soil classification.

Table 2
Descriptive statistics of the variables used in the model development.

Parameter Input Variables

Training Testing Validation

Qin (l s�1) L (m) Ao (cm2) TL (min) To (min) Qin (l s�1) L (m) Ao (cm2) TL (min) To (min) Qin (l s�1) L (m) Ao (cm2) TL (min) To (min)

Mean 2.89 278.18 189.0 131.9 239.6 2.89 304.4 160.3 148.2 265.0 2.62 227.4 172.7 111.2 174.1
Standard Error 0.21 10.68 17.15 9.32 25.18 0.34 14.10 27.57 15.25 47.90 0.40 27.9 32.92 19.18 51.31
Median 2 333 126 97 87 3 333 114.41 140.0 134.10 3 237 123.6 93 83
Standard Deviation 2.24 113.12 181.55 98.73 266.50 1.91 78.47 153.54 84.93 266.72 1.61 111.8 131.71 76.75 205.2
Variance 5.02 12,798 32,961 9748 71,024 3.64 6158 23,577 7213 71,140 2.59 12,517 17,348 5890.1 42,124
Skewness 1.09 �0.947 1.15 1.37 1.09 0.956 �1.13 1.688 1.733 0.965 1.85 �0.54 1.83 0.44 0.90
Kurtosis �0.19 �0.29 �0.13 1.55 0.26 0.197 2.03 1.896 3.567 0.421 5.08 �0.78 4.06 �0.74 �1.10
Maximum 7.50 400 558.19 400 1000 7.50 400 558.19 400 1000 7.50 380 558.19 244 545
Minimum 0.85 35 15.82 12.50 1.12 0.85 48 15.82 12.50 2.40 0.92 48 29.71 12.50 5.38
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According to Ferreira (2001a,b) the primary difference between
GEP and its predecessors, genetic algorithms (GAs) and genetic
programming (GP), stems from the nature of the individuals: in
GAs, the individuals are linear strings of fixed length (chromo-
somes). In GP, the individuals are nonlinear entities of different
sizes and shapes (parse trees). In GEP, the individuals are encoded
as linear strings of fixed length (chromosomes) that are expressed
as nonlinear entities of different sizes and shapes.

GEP uses chromosomes, which are usually composed of more
than one gene of equal length, and expression trees or pro-
grammes, which are the expressions of the genetic information
encoded in the chromosomes (Ferreira, 2006). The chromosomes
are composed of multiple genes, each gene encoding a smaller
sub-programme. In GEP, the linear chromosomes represent the
genotype and the branched expression trees represent the pheno-
type (Ferreira, 2001b). Fig. 1 illustrates the general GEP modeling
procedure.

GEP is a complete genotype/phenotype system in which the
genotype is totally separate from the phenotype. In contrast, in
GP, the genotype and phenotype constitute one entangled mess,
more formally referred to as a simple replicator system. As a result,
GEP’s genotype/phenotype system surpasses the GP system by a
factor of 100–60,000 (Ferreira, 2001a,b). GEP models encode their
information in linear chromosomes, which are later translated or
expressed in expression trees. These computer programmes are
usually developed to solve a particular problem and are selected
according to their ability to solve that problem (Guven and
Aytek, 2009).

2.2.1. Developing the GEP model
To develop the GEP model, the available data (159 data points)

was distributed randomly into a training set (70% of the datasets), a
testing set (20% of the data sets), and a validation set (10% of the
data sets). The training and testing sets therefore contain 112
and 31 data points, respectively; while the validation set has the
remaining 16 data points. In the training stage, the GEP is trained
to get the best performance with minimum errors. The testing step
was carried out to calculate statistical measures of goodness of fit
(Kalogirou, 2001; Yang et al., 2003). The five input parameters used
were Qo, L, TL, To and Ao. The Z was the output parameter. GEP
model development consisted of five major steps (Ferreira,
2001a,b):

(1) Select the fitness function. The fitness (fi) of an individual
program (i) is measured by:
f i ¼
XCt

j¼1

M � jCði;jÞ � T ðjÞj
� � ð1Þ

where M is the selection range, C(i,j) is the value
returned by the individual chromosome i for fitness case
j (out of Ct fitness cases) and Tj is the target value for fit-
ness case j. If |C(i,j) � Tj| (the precision) 6 0.01, then the
precision is 0 and fi = fmax = CtM. The advantage of this fit-
ness function is that the system can find the optimal
solution by itself.
(2) Choose the set of terminals (T) and the set of functions (F) to
create the chromosomes. For instance, the terminal set
includes the following variables: Qo, L, TL, To, and Ao. The
choice of functions depends on the user. In this study, basic
arithmetic operators (+, �, �, �) and some basic mathemat-
ical functions (

p
, exp) were used to get the optimum GEP

model, as listed in Table 3.
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Fig. 1. Flow chart of the gene expression algorithm (Ferreira, 2001b).

Table 3
Parameters of the optimized GEP model.

Parameter Description of parameter Parameter setting

P1 Number of chromosomes 30
P2 Number of genes 3
P3 Function set +, –, �, �, sqrt, exp, X2

P4 Linking function Addition
P5 Fitness function Mean squared error
P6 Mutation rate 0.00138
P7 Inversion rate 0.00546
P8 One-point recombination rate 0.00277
P9 Two-point recombination rate 0.00277
P10 Gene recombination rate 0.00277
P11 Gene transposition rate 0.00277
P12 Number of constants 7
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(3) Choose the chromosomal architecture. A single gene and
two head length was initially used. The number of genes
and heads were increased one after another during each
run and the training and testing performance of each model
was monitored.

(4) Choose the linking function. Only addition or multiplication
linking functions could be chosen for algebraic sub-trees.

(5) Select the set of GEP operators from mutation, transposition
and recombination. This process was repeated for a pre-
specified number of generations or until a solution was
found.

In the present work, the GeneXpro program is used to predict
the volume of infiltrated water in a furrow and to find a general-
ized solution for infiltration that can be applied to different soils
and furrow conditions.
2.3. Two-point method

The VB is based on the principle of mass conservation, which is
expressed by the following integral form (Lewis and Milne, 1938):

Qotx ¼ Aoxþ
Z x

0
Zðtx � tsÞds ð2Þ

where Qo = inflow rate per furrow (m3/min); tx = time from the start
of inflow (min); Ao = cross-sectional area of inflow (m2); x = advance
distance along the field (m); Z = cumulative infiltration volume per
unit length as a function of opportunity time (tx � ts) (m3 m�1); and
ts = advance time (min) to point s (m). The two-point method is
based on the VB in which the measurement of advance times at
two points, preferably one in the middle and the other at the end
of a furrow, is used to calculate values of the infiltration parameters
(Christiansen et al., 1966; Elliott andWalker, 1982; Burt et al., 1982;
Blair and Smerdon, 1988). Eq. (2) may be written as:

Qotx ¼ ryAoxþ rzZox ð3Þ
where Zo = infiltrated area at the inlet (m3 min�1); ry = surface
water profile shape factor; and rz = subsurface water profile shape
factor. Two of the simplest and most commonly used approxima-
tions for infiltration are the Kostiakov equation which can be writ-
ten in general terms for furrow irrigation as (Walker et al., 2006):

Z ¼ kta ð4Þ
and the modified Kostiakov equation

Z ¼ k0sa0 þ f os ð5Þ
where Z = cumulative infiltration in units of volume per unit length
of furrow (m3 min�1); s = elapsed time of infiltration (min);
fo = basic infiltration rate (m3 m�1 min�1); and k, a, k0 and
a0 = empirical coefficients which must be determined experimen-
tally and which vary with the type of soil and its condition. k and
k0 have units of m3 m�1 min�a and m3 m�1 min�a0, respectively.

According to infiltration theory, the exponents a and a0 in Eqs.
(2) and (3) should lie between 0 and 1, with most observed values
lying between 0.2 and 0.9 (Blair and Reddell, 1983; Serralheiro,
1988). Substituting the value of Zoin Eq. (3) by Eq. (5) gives:

Qotx ¼ ryAoxþ rzk
0ta

0
x xþ

f otxx
ð1þ rÞ ð6Þ

If Eq. (2) is used instead of Zo, the third term in Eq. (6) will be elim-
inated. The basic infiltration rate, fo, needs to be determined inde-
pendently. When the field evaluation includes measurements of
inflow and outflow, fo can be determined as:

f o ¼
Qo � Qtw

L
ð7Þ

where Qtw = tailwater outflow per furrow (m3 min�1). The value of
ry is usually assumed to be constant during the advance and is in
the range of 0.7–0.9 (Strelkoff and Katopodes, 1977). Walker and
Skogerboe (1987) have proposed that ry = 0.77. Moreover, the aver-
age area of the surface stream is constant from the beginning of irri-
gation until the advance halts before or at the end of the field. The
water depth at the inlet of the system is usually assumed to be the
normal depth, which can be computed using Manning’s equation as
follows (Walker, 1989):

Ao ¼ Qon

p1S
0:5
o

 !1=p2

ð8Þ

where n = manning roughness coefficient; S0 = field slope (m m�1);
p1 and p2 = parameters depending on the furrow geometry. For
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determining rz, many authors have used the basic assumption that
the advance trajectory does not have a concise mathematical
description, but can be reasonably well approximated with the sim-
ple power function (Elliott and Walker, 1982; Walker and
Skogerboe, 1987; Scaloppi et al., 1995):

x ¼ ptrx ð9Þ
where p and r = fitting parameters without physical interpretation.
Elliott and Walker (1982) made several comparisons of Eq. (11)
with more elaborate relationships and methods of fitting and con-
cluded that the best results are achieved by a two-point fitting of
the equation. So, Kiefer (1965) derived the following expression:

rz ¼ aþ rð1� aÞ þ 1
ð1þ aÞð1þ rÞ ð10Þ

Eq. (6) can be written for the two common advance points which
are the mid-distance of the furrow (0:5L, t0:5L) and the end of the
furrow (L; tL), to provide a simultaneous solution for k0 and a0 as
follows:

a0 ¼ logðVL=V0:5LÞ
logðtL=t0:5LÞ ð11Þ

and

k0 ¼ VL

rzta
0

L

ð12Þ

In which

V0:5L ¼ Q0t0:5L
0:5L

� ryA0 � f 0t0:5L
ð1þ rÞ ð13Þ

and

VL ¼ Q0tL
L

� ryA0 � f 0tL
ð1þ rÞ ð14Þ
2.4. Performance criteria

The infiltrated water volume obtained from the GEP technique
and two-point method were evaluated by computing four standard
statistical performance evaluation criteria. The statistical perfor-
mance evaluation criteria that were used to reflect the goodness
of simulation can be expressed as:

R2 ¼ ðPn
i¼1ðEi � EÞðCi � CÞÞ2Pn

i¼1ðEi � EÞ2 �Pn
i¼1ðCi � CÞ2

ð15Þ

OI ¼ 1
2

1� RMSE
Emax � Emin

þ
Pn

i¼1ðEi � CiÞ2Pn
i¼1ðEi � EÞ2

" #
ð16Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðEi � CiÞ2
n

s
ð17Þ

MAE ¼
Pn

i¼1jEi � Cij
n

ð18Þ

where Ei = value of ETref estimated by the PMG; Ci = corresponding
value calculated by mathematical ETref models; n = number of
observations; E = average of the estimated values; and C = average
of the calculated values. Emax = the maximum experimental value.
Emin = the minimum experimental value.

The coefficient of determination (R2) measures the degree of
correlation between the estimated and calculated values, where
values approaching 1.0 indicate a good correlation. The root mean
square error (RMSE) expresses the error in the same units that
describe the variable (Legates and McCabe, 1999). The lower the
RMSE, the better the matching. The overall index of the model per-
formance (OI) combines the normalized RMSE and the model effi-
ciency value. An OI value of 1.0 indicates a perfect fit between a
model’s estimated and calculated values (Alazba et al., 2012;
Mattar et al., 2015; Mattar and Alamoud, 2015). The mean absolute
error (MAE) is the average value of the absolute differences
between the estimated and calculated values. A low MAE implies
good model performance.
3. Results and discussion

3.1. GEP-based formulation for infiltrated water volume under furrow
irrigation

Formulations Z under furrow irrigation the best result by the
GEP algorithm are as given below:

Z ¼ Q2
in

ðAþ ð�5:75�
ffiffiffi
L

p
ÞÞ2

þ ð7:8� QinÞ þ ð�0:134� ToÞ
ðA� QinÞ þ ðTL þ 193:27Þ

þ To

ð�0:0257� TL � AÞ þ 1939þ L

In which Qin is in (l s�1), L is in (m), TL is in (min), To is in (min)
and Ao is in (cm2). The expression tree of the above formulation is
shown in Fig. 2. A comparison of the observed values versus values
predicted by GEP is shown in Figs. 3 and 4. As shown in this figure,
the proposed equation can be separated into three independent
components (subprograms or genes) linked by an addition func-
tion. Each subprogram represents an individual aspect of the prob-
lem such that a meaningful overall solution is developed (Ferreira
(2001a,b)). Therefore, each of the evolved subprograms contains
important information about the physiology of the final model.
Each gene expressed in the final equation is responsible for resolv-
ing a particular facet of the problem. Such information provides an
opportunity for further scientific discussion at genetic and chromo-
somal level (Ferreira (2001a,b)).
3.2. Performance analysis and model validity

The experimental data taken from literature are subdivided into
three sets which are training, testing and validation. These sets are
used to evaluate the generalization capacity of the GEP-based
model. All of the results obtained from experimental studies and
predicted by using the training and testing processes of GEP model
are given in Figs. 3 and 4. As it is visible in Figs. 3 and 4 the values
obtained from the training and testing processes are very close to
the experimental results. The result of training and testing in
Table 4 shows that the GEP model is capable of generalizing
between input and output variables with reasonably good predic-
tions. The high values of R2 (97.2%) and OI (97%) and the low values
of RMSE (0.01 m3 m�1) and MAE (0.008 m3 m�1) in training pro-
cess, Furthermore, A similar results in testing process which are
The high values of R2 (95.8%) and OI (94.5%) and the low values
of RMSE (0.01 m3 m�1) and MAE (0.011 m3 m�1) show that the
GEP model is suitable and can predict the infiltrated water volume
under furrow irrigation and the values very close to the experi-
mental values. However, no rational model to predict the all sys-
tems of surface irrigation (Furrows, basins, and borders) has been
developed yet that would encompass the influencing variables
considered in this study. Therefore, it is not possible to generalize
the developed GEP furrow model for all systems of surface
irrigation.



Fig. 2. Flow chart of the Gene Expression Algorithm (Ferreira, 2001b).
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3.3. Comparison between the GEP model and the two-point method

The validation results of the GEP model was compared with the
two-point method Table 4 and Fig. 5. It can be seen from the table
and the figure that the GEP model performs better than the two-
point method. Statistical analysis of the data shows a close
relationship between the observed and the simulated series;
the determination coefficient R2 of GEP model reached 96%. While
the two-point method had the a R2 value that was about 3.2% less
accurate than GEP model. Similarly, The OI value for the GEP model
was closer to one (95%) than its value (92%) for the two-point
method. Furthermore, the value of RMSE for the two-point method
(0.013 m3 m�1) was almost 1.4 times that of the value
(0.0092 m3 m�1) for the GEP model and the MAE value for the
two-point method (0.0094 m3 m�1) was almost 1.3 times that of
the value (0.0072 m3 m�1) the GEP model. Table 4 and Fig. 5 show



Table 4
Statistical performance of the optimized GEP model and the two-point method during
training, testing and validation.

Criteria Training Testing Validation

GEP Two-point GEP Two-point GEP Two-point

R2 (%) 0.972 0.968 0.957 0.950 0.961 0.931
RMSE (m3 m�1) 0.010 0.012 0.013 0.014 0.009 0.012
OI (%) 0.970 0.959 0.944 0.937 0.949 0.920
MAE (m3 m�1) 0.008 0.009 0.011 0.012 0.007 0.009
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Fig. 5. Comparison of observed and predicted values for both the GEP model and
the two-point method using the validation data set.
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that some values predicted from the two-point method were inac-
curate, though most of the predictions were acceptable when using
the GEP model. This indicates that the two-point method is not a
reliable forecasting procedure. Therefore, the GEP model is a good
alternative to the two-point method to some extent. This agrees
with (Shiri et al., 2012) who stated that the main advantage of
GEP models over other models (e.g., the adaptive neuro-fuzzy
inference system) is their ability to explicitly express the relation-
ship between the dependent and independent variables. The GEP
models are explicit and simple such that they can be used, by any-
one not necessarily being familiar with GEP, in a spreadsheet on a
very simple PC, even on a hand-held calculator (Landeras et al.,
2012).

3.4. Contribution analysis

A sensitivity analysis was carried out to determine the contribu-
tion of the closely concerned predictor variables (Qo, L, TL, To, Ao)
affecting the Z under furrow irrigation. A frequency value ranging
from zero to one where value approaching 1.0 refers that this vari-
able has been appeared in 100% of the best thirty programs evolved
by GEP. This is a common approach in the GP-based analyses
(Mollahasani et al., 2011). The frequency values of the predictor
variables are presented in Fig. 6. As it is seen, To and L are same
more sensitive (23.83%) to Z, followed by TL (21.08%). Moreover,
Qo had less accurate (11.51%) than other infiltration parameters.
4. Conclusions

The Z under furrow irrigation is a complex phenomenon. In this
study, soft computing technique, namely GEP is applied to esti-
mate this phenomenon directly. The five input variables were Qo,
L, TL, To and Ao. The data used to develop the GEP model collected
from the experimental previous work. The GEP model was trained
on 70% of the available data, tested using the remaining 20% and
validated using the remaining 10%. Assess the performance of the
new expression was conducted by comparing the predictions from
the GEP model and the two point method with the experimental
results. These comparisons showed that agreement between the
predicted and observed data was reasonable for the two-point
method but better for the GEP model. The best values of R2 and
OI are 96% and 95% and the minimum values of RMSE and MAE
are 0.0092 and 0.0072 m3 m�1 respectively, in validation phase of
GEP. These results showed that GEP model are capable of predict-
ing suitable results for the Z under furrow irrigation.
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