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Abstract: In this paper, synthesis and results of the low temperature sensing of carbon 

monoxide (CO) gas and room temperature UV sensors using one dimensional (1-D) ZnO 

nanostructures are presented. Comb-like structures, belts and rods, and needle-shaped 

nanobelts were synthesized by varying synthesis temperature using a vapor transport 

method. Needle-like ZnO nanobelts are unique as, according to our knowledge, there is no 

evidence of such morphology in previous literature. The structural, morphological and 

optical characterization was carried out using X-ray diffraction, scanning electron 

microscopy and diffused reflectance spectroscopy techniques. It was observed that the 

sensing response of comb-like structures for UV light was greater as compared to the other 

grown structures. Comb-like structure based gas sensors successfully detect CO at 75 °C 

while other structures did not show any response. 
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1. Introduction 

Oxides are the basis of various smart and functional materials [1]. Device fabrication using oxide 

semiconductors has gained significant importance, because physical properties of these oxides can be 

tuned. Among oxide semiconductors, zinc oxide (ZnO) has wide band gap energy (3.37 eV at room 

temperature), large exciton binding energy (60 meV), and strong piezoelectric and optical properties.  

One dimensional (1-D) ZnO nanostructures can be synthesized by numerous synthesis methods 

such as electrochemical, vapor phase, and liquid phase techniques [2–6]. The vapor transport method is 

one of the most extensively explored due to single crystal structure and high aspect ratio of the 

resulting nanostructures. The growth kinetics of ZnO nanostructures by the vapor liquid solid (VLS) 

method depends on many factors i.e., activation energy of crystallization, radius of catalyst droplets, 

super-saturation, synthesis temperature, volume of liquid droplets, and the equilibrium vapor pressure 

of the system. The thermodynamic limit for the critical radius (Rmin) of the metal liquid cluster at high 

temperature is given by Equation (1) [6]: 

 (1) 

where rLV is the liquid vapor surface free energy, α is the molar volume of liquid and S is the vapor 

phase super-saturation. The above relation suggests that there is a critical limit on the diameter and the 

ratio of supersaturation whereas temperature has direct effect on the growth of 1-D structures.  

Toxic gases can affect human life and health even at levels of few parts per million and therefore, 

highly sensitive gas sensors are needed. ZnO is a potential optical and gas sensor material due to its 

high sensitivity to toxic and combustible gases, carrier mobility, and good chemical and thermal 

stability at moderately high temperatures [7]. Recently it was reported that response time of ZnO based 

sensors strongly depends on the size, specific surface area and morphology [8]. The sensing mechanism 

of ZnO is linked with surface-controlled reactions in which grain size, defects, and oxygen adsorption 

play a crucial role in the sensing response [9].  

In the present study, systematic control of different ZnO nanostructural morphologies and their 

optical and sensing properties are presented. These ZnO nanostructures are promising materials for 

low-temperature, low-cost and high-performance gas sensors. The results show good response to  

200 ppm CO gas at low operating temperatures. The sensing properties of ZnO comb-like structures 

(without doping or surface modification) are unique as, to our knowledge, previously reported sensors 

all detect CO at relatively high temperatures. 

2. Experimental Section  

Source materials, zinc oxide (99.9%) and graphite in powder form, were mixed in 1:1 weight ratio 

for 2 hr in a planetary ball mill (Fritsch, Pulverisette 5). About 1 g of this mixture was transferred to an 

Al2O3 boat. Silicon substrates were placed on top of the boat for the deposition of ZnO nanostructures. 

The boat was placed in the center of a quartz tube (Ф 3.5 cm and length 100 cm). This quartz tube was 

then placed inside a tube furnace which was ramped to the required temperature (900–950 °C)  

at 10 °C/min. Argon was used as the carrier gas, while growth time and Ar flow rate were fixed at  
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60 min and 50 sccm, respectively, in all the experiments. The other end of quartz tube was attached to 

a flexible tube (Ф 1.0 cm and length 100 cm) and was kept open. 

X-Ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine the 

crystal structure and morphology of the grown nanostructures. Bandgap energy was calculated using 

UV-VIS reflectance spectroscopy. The CO gas sensors were fabricated by depositing 50 nm thick  

gold electrodes onto quartz substrates through sputter deposition technique and the respective ZnO 

nanostructures were placed between electrodes (through doctor blading). The response of the device 

was measured by observing the resistance behavior upon exposure of the device to CO gas. Thick film 

sensors were heat treated in air for 3 hours at 400 °C before performing the gas sensing experiments 

and experiments were performed at 75 °C with 5 min cycles of air and 200 ppm CO gas (balance air). 

A multimeter (Keithly 2000) was used to measure the respective resistance values in air (Ra) and the 

gas (Rg). 

3. Results and Discussion 

SEM micrographs of ZnO nanostructures synthesized at different temperatures are shown in  

Figure 1(a–c).  

Figure 1. SEM images of different morphologies of ZnO Nanostructures at different 

synthesis temperatures. (a) Comb-like structures at 950 °C. The inset shows the schematic 

diagram of these combs; (b) Nanobelts with needles at 925 °C; (c) Mixture of rod and belts 

at 900 °C.  

   

At 950 °C high density comb-like structures were synthesized, as shown in Figure 1(a). The general 

morphology of the samples consists of one-sided comb-shaped structures. Secondary arms of these 

comb-shaped dendrites are parallel to one another and their length may vary slightly from arm to arm. 

These secondary arms are connected from one side to the nanosheet to form the comb-like structure. 

Close examination suggests that most of the comb-like structures don’t have a clear primary arm (main 

stem) and it seems that the secondary arms are placed parallel to each other and a thin layer is formed 

on only one side of the rods, giving it the comb-shape morphology [10]. A low magnification SEM image 

suggests that these combs are in large quantity on the substrate (Supporting Figure S1(a)). The average 

secondary arm diameter is 342 nm ± 26 nm and the average secondary arm length is 26 µm ± 15 µm. The 

inset in Figure 1(a) shows a schematic diagram of these comb-like structures.  

Figure 1(b) shows a mixture of needle-shaped nanobelts grown from a single point at 925 °C. The 

length of these belts was found to be in tens of microns range and the average width of 36.2 µm ± 8.7 µm. 

These belts have faceted edges with needle-like ends. A low magnification SEM image is shown in 
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Figure S1(c). At 900 °C, mixtures of nanobelts with long needle-like structures and rods were obtained 

(Figure 1(c)). These belts also have faceted edges having average tip width and thickness (from center 

of rod) of 189 nm ± 56 nm and 98 nm ± 43 nm, respectively. These structures are unique as, according 

to our knowledge, such type of ZnO nanostructures have not been reported in the literature. 

All the SEM micrographs clearly suggest formation of different types of belt-shaped structures  

at all synthesis temperatures. The possible reason for this type of growth is attributed to higher 

supersaturation, surface instability and quick availability of ZnO polar surfaces, since at higher 

supersaturation, the atoms are readily available to these polar surfaces for random growth [5]. The possible 

reason of growth of secondary arms in case of comb-like structures can be linked to a self-catalyzed 

process for secondary arms and morphological instability in a supersaturated environment [11]. One of the 

possible reasons for the growth of needle-like nanobelts is that rates of crystal growth in different 

directions in ZnO are different i.e., V<0ıī0> > V<0ıīı> > V<000ı> [12] and due to this difference, the 

crystal growth face takes a specific shape. However, a detailed HRTEM analysis may be helpful to 

completely understand the growth kinetics of these belts. Overall, at different temperatures, the 

supersaturation conditions are different which ultimately changes the morphology. 

X-ray diffraction results (Figure 2) show presence of the main peaks of the ZnO structure. The 

figure clearly suggests that there is a systematic shift towards higher angle and full width at  

half-maximum (FWHM) is becoming narrower with an increase in the synthesis temperatures. The 

peak shift and narrow FWHM may be due to higher synthesis temperatures which help to enhance the 

mobility of atoms, subsequently resulting in reduced defect concentration and improved quality of the 

ZnO crystals [2,9]. Sharp and relatively high intensity peaks for comb-like structures (as compared to 

other structures) were observed which depicts high crystallinity of comb-like structures. Measured 

lattice parameters (a = b = 3.24 Å and c = 5.22 Å) for comb-like structures are comparable to the 

published values for the hexagonal Wurtzite structure. 

Room temperature UV-VIS reflectance spectra of as-grown samples, after Kubelka-Munk 

treatment, are shown in Figure 3. The spectrum of the as-synthesized ZnO nanostructures mainly 

consists of a strong UV peak and a weak defect related peak. The UV slope is the exciton 

recombination related near-band edge emission (NBE) of ZnO and the deep-level emission (DLE) 

usually results from radiative recombination of a photo-generated hole with an electron occupying the 

oxygen vacancy [13]. It was observed that with increase in synthesis temperature; there is (i) a 

systematic increase in peak intensity; (ii) steeper slope of the reflectance peak; and (iii) a clear shift in 

the peak towards lower wavelengths. There are many reasons for different peak intensities, i.e., 

dispersed light due to scattering, electronic transitions in the samples, and variation in sample 

quantities. As it was not fixed, different nanostructured samples have different as-grown quantities on 

the substrate. However, increases in the intensity, steeper slopes, and shift in the slope with increase in 

the synthesis temperatures can be attributed to the improved quality of the crystal. Two different 

groups in independent studies concluded that after high temperature treatment, UV peak intensity 

increases significantly, indicating that quality of ZnO is improved through annealing [4,14]. Therefore, 

it can be deduced that high temperature synthesis plays an important role in tuning optical properties, 

and above-mentioned observations can be linked to the improvement in the crystal quality of ZnO 

comb-shape nanostructures. The calculated band gap values for all the structures are comparable to the 

theoretical value for ZnO. 
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Figure 2. XRD results of as-synthesized ZnO nanostructures. Continuous shift in the peak 

towards higher angle and narrower FWHM suggests better crystalinity. 

 

Figure 3. Reflectance Spectroscopy results after Kubelka-Munk treatment of as-synthesized 

ZnO nanostructures clearly shows direct band emission and a defect related smaller peak 

for all the samples. Comb-like structures show steeper slope as compared to other samples. 

 

The small defect related peak at 2.5 eV is apparent in all the samples. Point defects, i.e., oxygen 

vacancy, interstitial oxygen, zinc vacancy, and impurities are considered to be possible origins for 

these bands [10,13,15]. However, its intensity is decreased for comb-like structures (high temperature 

synthesis). Point defects in ZnO, for entropy reasons, are thermodynamically stable at high 
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temperatures [16]. Therefore it is difficult to completely remove the point defects and a minor defect 

related peak may always be present. 

XRD and UV-VIS spectroscopy results are in perfect agreement with each other. Steeper slopes, 

and increased UV and XRD intensities suggest decreases in the crystal defects and improved quality of 

the ZnO. The XRD peak shift towards higher angle also indicates an improvement in the overall 

crystal structure. Hence, it can be suggested that high synthesis temperatures provide energy to ZnO 

atoms for enhance mobility and diffusion that could decrease defect density and improve the quality of 

ZnO comb-shape structures. 

The sensing mechanism of ZnO based gas sensors relies on the change in electrical conductivity as 

a result of chemical reaction between gas molecules and the iono-sorbed oxygen on ZnO nanostructure 

surface. The relation for the change in electrical conductance is given by Equation (2) [17]: 

 (2) 

where n◦ is the change in carrier’s concentration; e is the electron charge, μ is the mobility of 

electrons, r is the radius, and l is length of the nanostructure channel. Thus the conductance of ZnO 

nanostructures will increase when 50 sccm (200 ppm) of CO gas is introduced into the sensor chamber 

due to the exchange of electrons between ionosorbed species and ZnO nanostructures. The chemical 

reaction between CO and ionic oxygen species is given by Equation (3): 

2  (3) 

Figure 4 is the signal response of the thick film ZnO nanostructure-based CO gas sensors, measured 

at 75 °C. It was observed that comb-like structures detect CO with response S = 1.42 (where S = Ra/Rg 

where Ra and Rg are resistances in air and gas, respectively). On the other hand detection of CO with 

needle-shaped belts and mixture of belts and rods was negligible. The possible reasons for the 

detection of CO with comb-like structures may be the due to presence of non c-axis growth of 

secondary arms [8]. Different morphologies have different responses to the gas; as different 

crystallographic directions or atomic termination of the faces that are exposed to the gas are different [4]. 

The contribution of other crystallographic planes to the adsorption mechanisms may also be helpful 

towards improvement of sensing response of comb-like structures.  

The specific surface area of ZnO nanostructures plays an important role in gas sensing. Qiu et al. 

fabricated a humidity sensor based on ZnO tetrapods and investigated the influence of the specific 

surface area on the response. They found that ZnO tetrapod films display much higher response to 

humidity than ZnO nanoparticles based films, and the response increases with decreasing tetrapod size, 

all of which is ascribed to the high specific surface area and high surface activity of the small  

tetrapod [18,19]. However, the BET analysis related to this study (not shown) showed that the specific 

surface area is comparable for all the structures and may not be a significant factor in the difference  

in response to CO gas. The other possibility, i.e., better crystallinity of these structures, may not be  

a significant factor in detecting CO at low temperatures and many independent research  

groups have suggested only high temperature gas sensing even with good crystallinity of ZnO 

nanoparticles/nanostructures [20,21]. Response time of the comb-like structures is greater than 

recovery time which may be due to the slow surface adsorption of O2
−
·on ZnO. In a recent study,  

Lim et al. showed CO gas response of ZnO nanorods but the overall sensitivity was low and only 
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occurred at high temperatures (300 °C) [22]. More recently, Zeng et al. [23] fabricated hierarchically 

porous ZnO nanosheet thin film based CO sensors with high responses and short recovery times, but 

again at high temperatures (300 °C). The response reported in this report is at much lower temperature 

and the comb-shape structures show better response as compared to other structures. 

Figure 4. Sensing results for 2% CO gas at 75 °C suggest that only comb-like structures 

show cyclic changed in resistance with on and off cycles of CO gas. 

 

Figure 5 shows the room temperature UV sensing results of ZnO nanostructures. The resistance 

decreases with exposure of UV light (wavelength ranges from 300 nm to 367 nm with 18 W UV 

Lamp, Phillips) and increases again when the UV lamp is switched off. When ZnO nanostructures are 

exposed to air, the negative space charge layer is created and the adsorbed oxygen molecule captures 

an electron from the conduction band (sensor exhibits higher resistivity). When the energy of photon  

is greater than the energy band gap Eg, radiation is absorbed by the ZnO nanostructures based UV  

sensor, creating an electron-hole pair. The photo-generated, positively-charged hole neutralizes the 

chemisorbed oxygen responsible for the higher resistance, increasing the conductivity of the device. As 

a consequence, the conductivity in the material increases giving rise to photocurrent. This process goes 

on in a cyclic manner with the on-off switching of the UV light. It is expected that the reason for 

higher response time of ZnO comb-shape structures is not only due to better crystallinity (related to 

defects and bandgap energy) but also the non c-axis growth of secondary arms, as discussed above. 

The detailed HRTEM analysis of these comb-shaped structures have been reported in our previous  

articles [9,24]. 

A detailed summary of the results is given in Table 1. The table suggests that the results are 

systematic and comb-like structures not only have better crystallinity, but also better optical and 

sensing properties. 
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Figure 5. UV sensing at room temperature with (a) Comb-like structures; (b) Nanobelts 

with needles and (c) Mixture of rod and belts. 18 W UV lamp was used for this purpose. 

 

Table 1. Detailed summary of the results. 

Morphology of 

Nanostructures 

Synthesis 

Temperature (°C) 

Band Gap by 

UV/Vis (eV) 

Nanostructure 

Size (nm) 

UV Sensing 

Response 

CO Response 

(s) 

Comb-like structures 950 3.37 
 (secondary arms) 

= 242 nm 
8.0 1.4 

Belts with needle 

Like structures  
925 3.30 Width = 2.5 µm 1.0 Negligible 

Belts & rods 900 3.24 
 (tips) = 119 nm 

Width = 492 nm 
1.4 Negligible 

4. Conclusions 

Different morphologies of ZnO nanostructures were successfully synthesized by a vapor transport 

method by carefully controlling the synthesis temperature. XRD and optical properties suggest good 

crystallinity with low defect concentrations. Gas (CO) sensing properties were investigated for the 

grown structures. Response of comb-like structures was found to be 1.4 at 75 °C, while belts and 

mixture of belts and rod like structures did not show any response. Comb-like structures also show 

much better response to UV light. High response of comb-like structures is attributed mainly to non  

c-axis growth. 
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